Towards spatial geochemical modelling: Use of geographically weighted regression for mapping soil organic carbon contents in Ireland
نویسندگان
چکیده
It is challenging to perform spatial geochemical modelling due to the spatial heterogeneity features of geochemical variables. Meanwhile, high quality geochemical maps are needed for better environmental management. Soil organic C (SOC) distribution maps are required for improvements in soil management and for the estimation of C stocks at regional scales. This study investigates the use of a geographically weighted regression (GWR) method for the spatial modelling of SOC in Ireland. A total of 1310 samples of SOC data were extracted from the National Soil Database of Ireland. Environmental factors of rainfall, land cover and soil type were investigated and included as the independent variables to establish the GWR model. The GWR provided comparable and reasonable results with the other chosen methods of ordinary kriging (OK), inverse distance weighted (IDW) and multiple linear regression (MLR). The SOC map produced using the GWR model showed clear spatial patterns influenced by environmental factors and the smoothing effect of spatial interpolation was reduced. This study has demonstrated that GWR provides a promising method for spatial geochemical modelling of SOC and potentially other geochemical
منابع مشابه
Mapping Soil Organic Carbon Using IRS-AWIFS Satellite Imagery (Case Study: Dehaghan Rangeland, Isfahan, IRAN)
Soil organic matter has positive consequences eht rof quality and productivityof soil and also environment, agricultural and biological sustainability and conservation ofbiodiversity and soil. Organic matter plays an important role in the physical and chemicalprocesses of soil and thus, it is of a great effect on the spectral characteristics of soil. Thisstudy was done in order to develop the m...
متن کاملComparison of Geographically Weighted Regression and Regression Kriging to Estimate the Spatial Distribution of Aboveground Biomass of Zagros Forests
Aboveground biomass (AGB) of forests is an essential component of the global carbon cycle. Mapping above-ground biomass is important for estimating CO2 emissions, and planning and monitoring of forests and ecosystem productivity. Remote sensing provides wide observations to monitor forest coverage, the Landsat 8 mission provides valuable opportunities for quantifying the distribution of above-g...
متن کاملDetermining Effective Factors on Land Surface Temperature of Tehran Using LANDSAT Images And Integrating Geographically Weighted Regression With Genetic Algorithm
Due to urbanization and changes in the urban thermal environment and since the land surface temperature (LST) in urban areas are a few degrees higher than in surrounding non-urbanized areas, identifying spatial factors affecting on LST in urban areas is very important. Hence, by identifying these factors, preventing this phenomenon become possible using general education, inserting rules and al...
متن کاملComparison of Geographically Weighted Regression and Regression Kriging for Estimating the Spatial Distribution of Soil Organic Matter
Soil organic matter (SOM) is an important component of soils, and knowing the spatial distribution and variation of SOM is the premise for sustainably utilizing soils. The objective of this study was to compare geographically weighted regression (GWR) with regression kriging (RK) for estimating the spatial distribution of SOM using field-sample data in SOM and auxiliary data in correlated envir...
متن کاملCombining Soil Databases for Topsoil Organic Carbon Mapping in Europe
Accuracy in assessing the distribution of soil organic carbon (SOC) is an important issue because of playing key roles in the functions of both natural ecosystems and agricultural systems. There are several studies in the literature with the aim of finding the best method to assess and map the distribution of SOC content for Europe. Therefore this study aims searching for another aspect of this...
متن کامل